Effect of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat
by
Ainsworth K, Smith SE, Zetterstrom TS,
Pei Q, Franklin M, Sharp T
University of Oxford,
Department of Clinical Pharmacology,
Radcliffe Infirmary, UK.
Psychopharmacology (Berl) 1998 Dec; 140(4):470-7


ABSTRACT

This study examined the effect of repeated treatment with the antidepressant drugs, fluoxetine, desipramine and tranylcypromine, on dopamine receptor expression (mRNA and binding site density) in sub-regions of the nucleus accumbens and striatum of the rat. The effect of these treatments on extracellular levels of dopamine in the nucleus accumbens was also measured. Experiments using in situ hybridisation showed that the antidepressants caused a region-specific increase in D2 mRNA, this effect being most prominent in the nucleus accumbens shell. In contrast, none of the treatments increased D1 mRNA in any of the regions examined. Measurement of D2-like binding by receptor autoradiography, using the ligand [3H]YM-09151-2, revealed that both fluoxetine and desipramine increased D2-like binding in the nucleus accumbens shell; fluoxetine had a similar effect in the nucleus accumbens core. Tranylcypromine, however, had no effect on D2-like binding in the nucleus accumbens but decreased binding in the striatum. In micro-dialysis experiments, our data showed that levels of extracellular dopamine in the nucleus accumbens were not altered in rats treated with either fluoxetine or desipramine, but increased by tranylcypromine. From our findings, we propose that the antidepressant drugs tested enhance dopamine function in the nucleus accumbens through either increased expression of post-synaptic D2 receptors (fluoxetine and desipramine) or increased dopamine release (tranylcypromine).
Effort
Drugs and reward
Dopamine and sex
The dopamine transporter
Dopamine knock-out mice
Dopamine, dread and desire
Dopaminergic Antidepressants (PDF)
Depression, dopamine and dextroamphetamine
Mesolimbic medium spiny neurons and pleasure
Regulation of synapses in the nucleus accumbens
The nucleus accumbens: opioids versus cannabinoids
The mesolimbic dopamine reward circuit in depression
Dopamine, depression and dopaminergic antidepressants
The dopamine connection: the dopaminergc mechanism of antidepressants


Refs
and further reading

HOME
HedWeb
Nootropics
Cocaine.org
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family